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Abstract 
The presence and impact of recessive lethal mutations have been widely documented in diploid outcrossing species. However, precise esti-
mates of the proportion of new mutations that are recessive lethal remain limited. Here, we evaluate the performance of Fit∂a∂i, a commonly 
used method for inferring the distribution of fitness effects (DFE), in the presence of lethal mutations. Using simulations, we demonstrate 
that in both additive and recessive cases, inference of the deleterious nonlethal portion of the DFE is minimally affected by a small proportion 
(<10%) of lethal mutations. Additionally, we demonstrate that while Fit∂a∂i cannot estimate the fraction of recessive lethal mutations, Fit∂a∂i 
can accurately infer the fraction of additive lethal mutations. Finally, as an alternative approach to estimate the proportion of mutations that 
are recessive lethal, we employ models of mutation–selection–drift balance using existing genomic parameters and estimates of segregating 
recessive lethals for humans and Drosophila melanogaster. In both species, the segregating recessive lethal load can be explained by a very 
small fraction (<1%) of new nonsynonymous mutations being recessive lethal. Our results refute recent assertions of a much higher propor-
tion of mutations being recessive lethal (4%–5%), while highlighting the need for additional information on the joint distribution of selection 
and dominance coefficients.
Keywords: lethal mutations, distribution of fitness effects, site frequency spectrum, mutation–selection balance

Introduction
Since the early days of genetics, it was noted that it was 
often not possible to make a chromosome homozygous in 
a Drosophila cross. This inability to make a chromosome 
homozygous was taken as evidence that it carried a reces-
sive lethal mutation in the heterozygous state that resulted in 
death or sterility when made homozygous (Dobzhansky et al., 
1954; Dubinin, 1946). Through further study, approximately 
20%–40% of Drosophila melanogaster autosomes sampled 
from natural populations could not be made homozygous, 
implying approximately 1.6 recessive lethal mutations per 
diploid genome (Lynch & Walsh 1998; Simmons & Crow, 
1977). Similar estimates of ~1–2 recessive lethals per dip-
loid genome have also been obtained from natural zebrafish 
and bluefin killifish populations, despite these species having 
genome sizes an order of magnitude larger than D. melano-
gaster (Halligan & Keightley, 2003; McCune et al., 2002). 
Together, these studies suggest that the recessive lethal load 
may be relatively constrained across species.

Obtaining estimates of the number of segregating recessive 
lethals in humans has required more indirect approaches, 
given that humans are not amenable to experimentation. In 
the 1950s, Morton et al. found that the rate of juvenile mortal-
ity in humans increased with increasing relatedness between 
an individual’s parents (Morton et al., 1956). Such studies 

have revealed that humans typically carry 1.4 diploid lethal 
equivalents or mutations that would result in a genetic death 
if made homozygous (Bittles & Neel, 1994). This estimate 
may therefore represent an upper bound on the number of 
recessive lethals, as the total number of lethal equivalents in 
a genome represents the cumulative effect of all recessive del-
eterious mutations in a genome (Morton et al., 1956). More 
recently, an elegant study combined the observed incidence of 
recessive lethal disease in a founder population with pedigree 
records and simulations to more directly estimate the number 
of recessive lethal mutations carried by the founders (Gao et 
al., 2015). They inferred that each founder carried ~0.6 reces-
sive lethal mutations; however, they note that this may be a 
slight underestimate (Gao et al., 2015). Thus, available evi-
dence suggests that humans have a recessive lethal load that 
is similar to estimates from other species.

Separately from this work, a growing number of stud-
ies have attempted to use genetic variation data to estimate 
the distribution of fitness effects of new mutations (DFE) in 
humans and other species. This distribution quantifies the 
expected effects on fitness of new mutations entering a pop-
ulation, including lethal mutations. In other words, it is the 
distribution of selection coefficients (s) for new mutations at 
sites of a particular type in the genome (e.g., nonsynonymous 
mutations). This approach has been implemented in a number 
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of software programs (Boyko et al., 2008; Eyre-Walker et al., 
2006; Keightly & Eyre-Walker, 2007; Tataru et al., 2017), 
including Fit∂a∂i (Kim et al., 2017). Fit∂a∂i relies on genetic 
variation data from resequencing of individuals from natu-
ral populations, which is summarized by the site frequency 
spectrum (SFS), that is, the numbers of variants with partic-
ular frequencies in the sample. The parameters of the DFE 
are then estimated using population genetic models of muta-
tion, selection, and demography that match this observed 
SFS. Methods based on the SFS have been used to infer the 
DFE from numerous taxa including prokaryotes (Cavassim 
et al., 2021), C. elegans (Gilbert et al., 2022), yeast (Elyashiv 
et al., 2010; Huber et al., 2017; Koufopanou et al., 2015), 
Drosophila (Campos et al., 2014; Castellano et al., 2015; 
Huang et al., 2021; Huber et al., 2017; Keightley & Eyre-
Walker, 2007), Arabidopsis (Huber et al., 2018; Moutinho 
et al., 2019), primates (Castellano et al., 2019; Galtier, 2016; 
Hvilsom et al., 2012; Ma et al., 2013), and humans (Eyre-
Walker & Keightley, 2009; Boyko et al., 2008; Eyre-Walker 
et al., 2006; Huang et al., 2021; Kim et al., 2017; Li et al., 
2010). Estimates of the DFE for nonsynonymous mutations 
in humans suggest that there are many nearly neutral muta-
tions (e.g., 32% of mutations were estimated to have s > −10−4 
by Kim et al., 2017). The proportion of strongly deleterious 
mutations (s < −10−2) has varied across studies, ranging from 
~25% to 35% of mutations (Boyko et al., 2008; Eyre-Walker 
et al., 2006; Kim et al., 2017). Importantly, recent studies 
using larger sample sizes have suggested that the proportion 
of very strongly deleterious mutations (s < −0.1) is very small 
(e.g., Kim et al., 2017 estimated ~3%).

Studies of the DFE from approaches like Fit∂a∂i that use 
genetic variation from natural populations summarized by 
the SFS have several limitations. First, inferences conducted 
to date typically assume that the effects of deleterious muta-
tions, including strongly deleterious ones, are additive (h = 
0.5, though see Huber et al., 2018). This is largely due to 
computational convenience and the challenges in separately 
inferring dominance and the DFE using data from a single 
population as the SFS may not contain sufficient information 
regarding both parameters (Boyko et al., 2008; Ragsdale, 
2022). Second, the genetic variation data in a sample of hun-
dreds or fewer individuals from the population largely con-
sists of weakly deleterious or neutral variation, as strongly 
deleterious mutations are unlikely to be segregating in sam-
ples of modest size (Kim et al., 2017). Instead, the inferences 
made about the proportions of strongly deleterious mutations 
are informed by the absence of genetic variation expected 
under the particular mutation rate and demographic history 
and the functional form of the DFE assumed (Bank et al., 
2014). Indeed, recent studies have suggested that the propor-
tion of strongly deleterious mutations may have been under-
estimated by SFS-based approaches applied to data sets of less 
than thousands of individuals (Dukler et al., 2022; Galtier 
& Rousselle, 2020; but also see Charmouh et al., 2022). 
Thus, the SFS-based methods to infer the DFE may not give 
a complete picture of the proportion of lethal and near-lethal 
mutations.

The extent to which these limitations impact inference of 
the DFE and the proportion of recessive lethal mutations 
from molecular population genetic data remains unclear. 
Indeed, several studies have questioned the accuracy of 
DFE inference methods from population genetic data using 
samples from hundreds of individuals. It has been claimed 

(Kardos et al., 2021; Pérez-Pereira et al., 2022) that not only 
are strongly deleterious mutations missed by the molecular 
genetic approaches, but also the proportion of weakly dele-
terious and nearly neutral mutations has been overestimated 
in studies of the DFE (Kim et al., 2017). Furthermore, studies 
have claimed that there may be a higher proportion of lethal 
or near-lethal new mutations in a variety of organisms. For 
example, Kardos et al. (2021) proposed a DFE where 5% of 
deleterious mutations are recessive lethal and ~21% have s 
< −0.1. Similarly, Pérez-Pereira et al. (2022) proposed a DFE 
where ~4% of deleterious mutations are recessive lethal and 
~41% have s < −0.1. Importantly, both of these DFEs were 
not directly estimated from data, but were instead loosely 
based on results from mutation accumulation experiments in 
Drosophila (Kardos et al., 2021; Pérez-Pereira et al., 2022). 
Moreover, recent work has found that the models proposed 
by Kardos et al. (2021) and Pérez-Pereira et al. (2022) are 
not consistent with patterns of genetic variation or estimates 
of the number of segregating recessive lethals in humans 
(Kyriazis et al., 2022).

Given these disparate claims regarding the proportion of 
strongly deleterious and lethal mutations, there is a critical 
need to test the performance of molecular estimates of the 
DFE and to develop better estimates. Here we take two steps 
in that direction by first testing the performance of one SFS-
based approach, Fit∂a∂i (Kim et al., 2017), in the presence of 
lethal mutations using simulated genetic variation data, and 
second, developing an alternative approach for quantifying 
the fraction of new mutations that are recessive lethal. We 
find that Fit∂a∂i is unable to accurately infer the simulated 
fraction of recessive lethals when performing inference under 
an additive model, as expected, given the misspecification 
of the dominance model. However, we find that Fit∂a∂i can 
accurately estimate the simulated fraction of additive lethal 
mutations. Moreover, in both the recessive and additive case, 
a small proportion (<10%) of lethal mutations does not 
greatly affect inference of the nonlethal portion of the DFE. 
Finally, mutation–selection–drift balance models in concert 
with estimates of segregating recessive lethals in humans and 
D. melanogaster suggest that a very small fraction of muta-
tions (<1%) in humans and D. melanogaster are likely to be 
recessive lethal. Our work suggests limits on the proportion 
of mutations that are recessive lethal, which has implications 
for studying inbreeding depression in a variety of species.

Materials and methods
Simulations
We used the forward-in-time simulator SLiM 3 (Haller 
& Messer, 2019) to generate genetic variation data sets 
(Supplementary Figure S1). For each simulation replicate, we 
modeled a 100  Mb chromosomal segment with randomly 
placed genic regions comprising ~1.5% (or ~1.5  Mb) of 
the total chromosome. The length of intervening noncoding 
regions was modeled using a uniform distribution between 
500 and 50,000 bp. Within each coding region, we modeled 
deleterious (nonsynonymous) and neutral (synonymous) 
mutations occurring at a ratio of 2.31:1 (Huber et al., 2017). 
To maintain computational efficiency, we did not model neu-
tral mutations occurring in noncoding regions.

We simulated from a bimodal DFE for deleterious muta-
tions, with nonlethal mutations arising from a gamma dis-
tribution and lethal mutations arising with a fixed selection 
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coefficient s = −1.0. The parameters of the gamma distribu-
tion were based on estimates from the 1000G European pop-
ulation consisting of a mean s = −0.0131 (where s here reflects 
the reduction in fitness in the homozygote) and shape param-
eter of 0.186 (Kim et al., 2017). We assumed varying levels 
of lethal mutations of 0%, 1%, 5%, and 10%. For example, 
in the case of 5% lethals, selection coefficients for 95% of 
nonsynonymous mutations were drawn from the gamma dis-
tribution and the remaining 5% were set to have a selection 
coefficient s = −1.0 (see Supplementary Table S1). All muta-
tions arising from the gamma distribution were assumed to 
be additive (h = 0.5), whereas lethal mutations were assumed 
either to be additive or fully recessive (h = 0.0). Assuming 
nonlethal mutations are additive is a reasonable first approx-
imation as evidence suggests more strongly deleterious muta-
tions are the ones that are more likely to be most recessive 
and more weakly deleterious mutations tend to have more 
additive effects on fitness (Agrawal & Whitlock, 2011). For 
all simulations, we assumed a mutation rate of 1.5 × 10−8 per 
site per generation as in Ségurel et al. (2014) and uniform 
recombination rate of 1.0 × 10−8 crossover events per site per 
generation (Kong et al., 2010). We assumed a constant effec-
tive population size (Ne) of 10,000 diploid individuals for all 
simulations. We ran burn-ins for 10 ×Ne generations to attain 
equilibrium prior to outputting the SFS.

From each simulation, we computed both deleterious (non-
lethal and lethal) and neutral site frequency spectra (SFS) 
from sample sizes of 10, 100, and 1,000 haploid genomes 
independently. To obtain SFS with a sufficient number of 
SNPs and to mimic a human exome, we ran 30 simulation 
replicates for each set of parameters and summed the SFS 
across replicates. This procedure yielded a total of ~44 Mb 
of total coding sequence for resulting neutral and deleteri-
ous SFS, which were then used for downstream demographic 
and the DFE inference, respectively. To explore the impact of 
simulation variance, we ran 20 total replicates (each resulting 
in an SFS for ~44 Mb of coding sequence) for each param-
eter combination and conducted independent demographic 
and DFE inference with ∂a∂i (Gutenkunst et al., 2009) and 
Fit∂a∂i (Kim et al., 2017) on the resulting SFS. A schematic 
figure of our simulation and inference pipeline is shown in 
Supplementary Figure S1.

DFE inference
We used the software ∂a∂i (Gutenkunst et al., 2009) and 
Fit∂a∂i (Kim et al., 2017) to infer the distributions of selec-
tion coefficients of new mutations from the simulated data. 
Fit∂a∂i and ∂a∂i rely on the Poisson random field model of 
the SFS (Sawyer & Hartl, 1992; Sethupathy & Hannenhalli, 
2008). Because both demography and selection change allele 
frequencies, but we are only interested in quantifying the 
effects of selection, we accounted for demography by first 
inferring the demographic parameters (see Supplementary 
Table S2) using the putatively neutral synonymous sites (the 
synonymous SFS) with ∂a∂i. We found the demographic 
parameters that maximized the likelihood (i.e., the max-
imum likelihood estimates, MLEs) given the data after 30 
iterations. Conditioning on resulting demographic parame-
ters, we then inferred selection parameters (DFE) from the 
nonsynonymous SFS using Fit∂a∂i. Importantly, by default 
and as run in our study, Fit∂a∂i assumes that all mutations 
have an additive effect on fitness (h = 0.5). As such, in sim-
ulations with recessive lethal mutations, the model that is 

fit to the data is the incorrect model, allowing us to test the 
robustness of Fit∂a∂i to model misspecification. We also col-
lected only MLEs of selection parameters after 30 iterations. 
Detailed information about the methodology used to infer 
the DFE and demography is provided in Kim et al., (2017) 
and Gutenkunst et al. (2009).

Fitting the gamma distribution
To assess Fit∂a∂i’s performance on simulated data, 
we first inferred the DFE under a gamma distribu-
tion. We then calculated the proportion of mutations 
in different categories of selection coefficient (s) by dis-
cretizing the gamma distribution into five bins based 
on the strength of selection coefficients as neutral 
(|s| = [0, 10−5)), nearly neutral (|s| = [10−5, 10−4)),  
slightly deleterious ( |s| = [10−4, 10−3)), moderately del-
eterious (|s| = [10−3, 10−2)), and strongly deleterious 
(|s| = [10−2, 1]).

Fitting mixture distributions
We also inferred DFEs from the simulated data using Fit∂a∂i 
assuming distributions other than a gamma distribution. 
Specifically, we modeled the DFE using a mixture of distri-
butions as described in Kim et al. (2017): (a) Neu+Gamma: 
a gamma distribution with a proportion of neutral mutations 
with s uniformly distributed in the range |s| = [10−2, 1],  
(b) Gamma+Let: a gamma distribution with a proportion of 
lethal mutations with s uniformly distributed in the range 
|s| = [0, 10−4]; and (c) Neutral+Gamma+Let, a gamma 
distribution with a proportion of neutral (|s| = [0, 10−4]) and 
lethal mutations (|s| = [10−2, 1]). We assessed whether more 
complex models provided a better fit to the SFS than the sim-
ple gamma distribution using a likelihood ratio test (LRT). 
The LRT statistic was calculated as Λ = 2(llcomplex − llsimple)
, where llcomplex represents the log-likelihood for the complex 
DFE and llsimple represents the log-likelihood for the gamma 
distribution in all cases. Because the SNPs in our data set may 
be correlated with each other due to linkage, we did not rely 
on the asymptotic theoretical distribution of Λ under the null. 
Instead, we simulated 40 test data sets under the null (where 
the true DFE follows a gamma distribution). For each data 
set, we fit the gamma DFE and the more complex DFEs. We 
then computed Λ for each data set and used the 95th percen-
tile of the distribution of Λ as the critical value. We then used 
those critical values to decide whether to reject the gamma 
model in favor of the more complex model (Table 1). Thus, 
the LRTs used here account for linkage among SNPs.

Profile log-likelihood of the proportion of lethal 
mutations
To infer the proportion of lethal mutations using Fit∂a∂i, 
we performed a composite log-likelihood profile under the 
Gamma+Let model. To this end, we fixed the proportion 
of lethal mutations (plet) at a given value (ranging from 0 
to 0.5) and allowed Fit∂a∂i to infer the other parameters 
of the DFE (a, β) under the Gamma+Let distribution. For 
each simulated data set, we then found the value of plet  that 
had the highest log-likelihood, and thus was the MLE. Note 
that this analysis assumes that mutations are all unlinked. 
However, in reality and in our simulated data, deleterious 
variants may be linked. As such, these curves are composite 
profile likelihoods and cannot be directly used to compute 
confidence intervals.
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Estimating the proportion of lethals through 
mutation–selection–drift balance
In addition to attempting to infer plet via Fit∂a∂i using the SFS, 
we considered a second complementary approach. Specifically, 
we used mutation–selection–drift balance models coupled with 
estimates of segregating recessive lethals to estimate the fraction 
of new mutations that are recessive lethal in humans and in 
Drosophila melanogaster, following the approach from Amorim 
et al. (2017). Our aim with this model was to determine what 
fraction of new nonsynonymous mutations would need to be 
recessive lethal to explain empirical estimates of the number of 
segregating recessive lethals per diploid in humans and D. mela-
nogaster. Specifically, this approach leverages the result from 
Nei (1968) showing the mean stationary distribution of the fre-
quency of a recessive lethal mutation (q) can be related to the 
mutation rate (µ) and effective population size (Ne):

q ≈ µ
√
2πNe. (1)

This formula yields the mean allele frequency in the popu-
lation at a single locus (q), whereas estimates of segregating 
recessive lethals for humans and D. melanogaster are genome-
wide for a given individual. Assuming that lethal mutations 
only exist at nonsynonymous sites, no linkage across sites, 
and that a diploid individual is formed as a random sample 
of two alleles from the population at each locus, Equation 
1 can be extended to model the number of recessive lethal 
mutations carried per individual (R):

R ≈ 2µLPnplet
√

2πNe (2)

where L is the length of the coding sequence for each species, 
Pn is the proportion of the coding sequence leading to non-
synonymous mutations (Supplementary Table S3), and plet is 
the proportion of recessive lethal mutations. We then assessed 
the proportion of mutations that would need to be recessive 
lethal (plet) to explain observed numbers of segregating lethal 
mutations (R).

To apply this approach for humans, we assumed a mutation 
rate of 1.5 × 10−8 per site per generation (Ségurel et al., 2014), 

coding sequence length of 30  Mb (Keightley, 2012), and 
NS:SYN ratio of 2.31:1 (Huber et al., 2017; see Supplementary 
Table S3 for all parameters). As this model assumes equilib-
rium and the human population size has experienced substan-
tial exponential growth (Duchen et al., 2013; Gravel et al., 
2011; Tennessen et al., 2012), we assumed a range of effec-
tive population sizes of Ne = {20,000, 30,000, 60,000}. These 
population sizes were selected based on simulations under a 
human demographic model suggesting that recessive lethal 
allele frequencies in modern human populations are approxi-
mated by an equilibrium effective population size on the order 
of 20,000–30,000 (see Results). However, to account for any 
potential underestimation of recent exponential growth, we 
also project model results assuming an equilibrium effective 
population size of 60,000. We compare predictions from all 
effective population sizes to a range of segregating reces-
sive lethals of 0.6–1.6 lethals per diploid (Gao et al., 2015; 
Narasimhan et al., 2016). Although Narasimhan et al. (2016) 
estimated lethal loss-of-function equivalents––and not reces-
sive lethals––we use their estimate as an upper bound, given 
that the 0.6 estimate from Gao et al. (2015) is likely a slight 
underestimate because embryonic lethals were not considered 
in their inference (Gao et al., 2015).

For D. melanogaster, we assumed a mutation rate of 3 × 10−9 
per site per generation (Keightley et al., 2014; Sharp & Li, 
1989), coding sequence length of 22 Mb (Kim et al., 2021), and 
NS:SYN ratio of 2.85:1 (Huber et al., 2017; see Supplementary 
Table S3 for all parameters). We explored model predictions 
for several effective population sizes including Ne = {5 × 10−5, 
1 × 10−6, 5 × 10−6}, a range that encompasses existing estimates 
(H. Duchen et al., 2013; Huber et al., 2017; Li & Stephan, 
2006; Sheehan & Song, 2016). We compared predictions from 
this model to an experimentally estimated range of segregat-
ing recessive lethals of 1–3 per diploid (Lynch & Walsh, 1998; 
McCune et al., 2002; Simmons & Crow, 1977).

To test how violations of mutation–selection–drift balance 
along with varying dominance coefficients affected inference of 
plet, we carried out additional simulations under a nonequilibrium 
demographic model for humans. We focused on humans due to 

Table 1. Inference of pl̂et and model selection assuming different distributions of fitness effects when simulating varying proportions of lethal mutations.

Dominance 
of lethals 

True lethal 
Prop. (plet) 

Average 
MLE of 
p̂let 

Proportion of data sets where 
Gamma+Let fits significantly 
better than Gammaa 

Proportion of data sets where 
Neu+Gamma fits significantly 
better than Gammaa 

Proportion of data sets 
where Neu+Gamma+Let fits 
significantly better than Gammaa 

Recessive 
(h = 0)

0 0.018 0.00 0.00 0.00

0.01 0.015 0.05 0.00 0.05

0.05 0.012 0.00 0.35 0.05

0.1 0.002 0.00 0.90 0.55

Additive 
(h = 0.5)

0 0.021 0.10 0.00 0.10

0.01 0.030 0.25 0.00 0.10

0.05 0.063 0.85 0.00 0.60

0.1 0.107 1.00 0.00 1.00

Note. Results are reported assuming a nonsynonymous to synonymous sequence length ratio (LNS/LS) of 2.31:1, mutation rate (μ) = 1.5 × 10−8, and 1,000 
simulated haploid genomes. For each DFE, 20 replicates were simulated.
a A likelihood ratio test was used to assess whether the more complex model fits significantly better than the Gamma DFE. The 5% critical values for 
rejecting the null were found using the empirical distribution from the null simulations (plet = 0). The critical values were 20 for the Gamma+Let versus 
Gamma and the Neu+Gamma+Let versus Gamma comparisons. For the Neu+Gamma versus Gamma comparison, the critical value was 5. Note that 
models with a Let parameter tend to fit better when a large proportion of additive lethals (5% or 10%) are simulated.
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the large effective population size estimates for D. melanogaster 
(Duchen et al., 2013; Huber et al., 2017; Li & Stephan, 2006; 
Sheehan & Song, 2016), which are computationally infeasible 
for forward-in-time simulations. These simulations assumed a 
demographic model inferred by Kim et al. (2017) inferred based 
on the 1000G data set for the Europeans. This model assumes 
an ancestral Ne  =  12,378 diploids, followed by a bottleneck 
to Ne = 1,048 for 248 generations, growth to Ne = 13,625 for 
1,744 generations, and finally exponential growth to a final 
Ne = 657,719. We ran burn-ins at Ne = 12,378 for 1,000 gen-
erations, which was sufficient for recessive lethal mutations to 
reach equilibrium (Supplementary Figure S2). We assumed iden-
tical genomic parameters in these simulations as those used for 
our mutation–selection–drift balance analysis (Supplementary 
Table S3). To simulate 30 Mb of coding sequence, we modeled 
22,500 genes occurring on 22 autosomes, each with a length 
of 1,340 bp (Keightley 2012). We assumed no recombination 
within each 1,340 bp gene and a recombination rate of 0.001 
crossovers per bp per generation between genes.

Results
Testing the performance of Fit∂a∂i in the presence 
of recessive lethals
We focus first on the case of recessive lethals, specifically 
testing whether inferences of the DFE made using Fit∂a∂i 
are affected by the presence of recessive lethals and whether 
Fit∂a∂i can estimate the fraction of recessive lethals. In a 
sample of 1,000 haploid genomes from the population, we 
found that recessive lethal mutations are segregating in the 
sample if the proportion of recessive lethals is at least 5% 
(Supplementary Figure S3). Thus, we wanted to test whether 
the presence of these mutations affects DFE inference.

To infer the DFE from these simulated data, we used Fit∂a∂i 
(Kim et al., 2017). We initially performed inference assuming 
that the DFE follows a gamma distribution and that all dele-
terious mutations have an additive effect on fitness (h = 0.5), 
exploring how varying levels of simulated recessive lethals 
affect the inference of the shape (a) and scale (β) parameters 
of this distribution (see Methods, Figure 1A). The presence of 
recessive lethal mutations shifts the distributions of the esti-
mates of the shape and scale parameters of the DFE (Figure 
1A). However, the introduction of recessive lethals has a rela-
tively small impact on the inferred proportions of mutations 
in each bin of the DFE (Figure 1B), with the largest deviation 
observed in simulations where 10% of mutations are reces-
sive lethal. Specifically, for a model where 10% of mutations 
are recessive lethal, we infer a notable deficit of strongly dele-
terious variation relative to the true proportions (Figure 1B). 
This deviation is likely due to an excess of segregating vari-
ants relative to what is expected under a fully additive model 
(Supplementary Figure S4). In other words, recessive lethal 
mutations segregate at higher frequencies than expected 
under an additive model, and Fit∂a∂i therefore infers these 
mutations to have selection coefficients that are moderately 
deleterious, rather than lethal.

Because sample size affects the ability to discriminate 
across different classes of mutations (Kim et al., 2017), we 
performed the DFE inference under two smaller sample 
sizes of 10 and 100 haploid genomes (Supplementary Figure 
S5). As expected, the decrease in sample size increases the 
observed variance in DFE estimates across simulated data 
sets (Supplementary Figure S5A). The inferred fraction of 
moderately and strongly deleterious mutations is especially 
variable, independent of the proportions of lethals added to 
the simulation (Supplementary Figure S5B). This result is a 

Figure 1. Parameters of the gamma distribution and the inferred distribution of fitness effects (DFE) under different levels of recessive lethal mutations. 
(A) Inference of the shape (a) and scale (β) parameters under a gamma DFE model from simulated data with different levels of recessive lethals using 
1,000 haploid genomes in each simulation. (B) Expected versus inferred DFE for each lethal percentage under a gamma DFE model. Percentages are 
increments of recessive lethal mutations. Expected and inferred site frequency spectra used to fit the model are presented in Supplementary Figure 
S4. The DFE categories are defined as neutral (|s| = [0, 10−5)), nearly neutral (|s| = [10−5, 10−4)), slightly deleterious ( |s| = [10−4, 10−3))

, moderately deleterious (|s| = [10−3, 10−2)), and strongly deleterious (|s| = [10−2, 1]). Error bars correspond to the range of inferred proportions 
obtained across 20 simulation replicates.
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consequence of mutations with |s| > 10−3 being unlikely to 
segregate in smaller sample sizes, thus impeding inference of 
the true proportion of moderately and strongly deleterious 
mutations. Moreover, we observe the counterintuitive result 
that the inferred DFEs with small sample sizes are closer 
to the true DFEs in the presence of high levels of recessive 
lethals, though with higher variance (Supplementary Figure 
S5A and S5C). This occurs because with smaller sample sizes, 
recessive lethals do not segregate and affect DFE inference 
(Supplementary Figure S6), and the tail of the gamma DFE 
can then be extrapolated from the more weakly deleteri-
ous mutations that are segregating and the parametric DFE 
assumed.

Next, we attempted to fit more complex distributions of 
fitness effects to determine whether adding a proportion of 
lethal or neutral mutations may improve inference of the 
fraction of recessive lethals. For most data sets where 0% 
or 1% of mutations are recessive lethal, more complex mod-
els do not fit the data significantly better than the Gamma 
model (Table 1). However, when simulating higher frac-
tions of recessive lethals (5% and 10%), the Neu+Gamma 
model often fits the data significantly better than the Gamma 
model (Table 1). The reason for the improved fit of the 
Neu+Gamma model is that recessive lethal mutations segre-
gate at higher frequency under the true recessive model than 
what is expected under the additive model fit to the data. 
Thus, Fit∂a∂i infers these mutations to be more neutral than 
they actually are, and the mixture model with a proportion 
of neutral mutations ends up fitting the data better than the 
strict gamma model. Given that adding a proportion of neu-
tral mutations improved fit, we next assessed whether con-
sidering a neutral proportion in conjunction with a lethal 
proportion could further improve inference. Instead, we 
found this Neu+Gamma+Let model only fits significantly 
better than the Gamma model in 55% (11/20) of data sets, 
suggesting that the data still do not consistently support the 
presence of lethal mutations. Additionally, estimates of p ̂let 
remain close to zero and often do not correspond to the true 
parameter values (Table 1). With smaller sample sizes, esti-
mates of p ̂let show an upward bias and have larger confidence 
intervals (Supplementary Figure S5B).

Finally, to evaluate Fit∂a∂i’s performance under a 
Gamma+Let model further, we conducted log-likelihood 
profiling by considering a grid of values for p ̂let. Here, we 
again find that Fit∂a∂i cannot accurately estimate the true 
fraction of simulated recessive lethals and performs espe-
cially poorly when the DFE contains a high proportion of 
recessive lethal mutations (5% and 10%; Supplementary 
Figure S7). Thus, we conclude that Fit∂a∂i has limited 
power to infer the correct fraction of lethal mutations when 
lethals are completely recessive. This result demonstrates 
that misspecification of h in the inference impedes accurate 
estimation of the proportion of recessive lethals. However, 
estimates of the nonlethal portion of the DFE from Fit∂a∂i 
are still remarkably accurate, even when up to 5% of muta-
tions are recessive lethal.

Testing the performance of Fit∂a∂i when lethal 
mutations are additive
To determine how much our inferences of the proportion of 
lethal mutations are improved when the data are generated 
under the dominance model used for inference, we next per-
formed simulations where lethal mutations were additive.

Very few additive lethals segregate in the simulated data 
sets of sample sizes of 1,000 haploid genomes (Supplementary 
Figure S8). This is expected given that additive lethals are 
quickly removed from the population by purifying selec-
tion. When estimating the DFE under a gamma model, we 
find that the inferred DFEs are much closer to the true DFEs 
when compared with results for recessive lethals (Figure 2). 
Specifically, the gamma shape (a) parameters estimated under 
the different increments of additive lethals are less variable 
than in the recessive case (a ranged between 0.174 and 0.186 
for the additive model and between 0.186 and 0.212 for the 
recessive case). However, the β parameter varied more in 
the additive scenario (β ranged between 702 and 1814 for the 
additive case and ranged between 621 and 712 for the reces-
sive case) (Figure 2A, Supplementary Figure S9).

When fitting more complex models of the DFE to this data, 
we consistently find Gamma+Let to fit the data significantly 
better than the Gamma model (Table 1). For example, for 
≥5% recessive lethals, in at least 85% (17/20) of data sets, 
the Gamma+Let model had a significantly better fit com-
pared with the Gamma model. Moreover, our estimates 
of pl̂et are generally close to the true simulation fraction of 
lethals. Specifically, when assuming lethal levels of 1%, we 
infer pl̂et = 0.03, and when assuming lethal levels of 10%, we 
infer pl̂et  =  0.107 (Table 1, Supplementary Figure S9B). As 
previously observed for recessive lethals, the sample size does 
not affect the inference of the expected nonlethal portion of 
the DFE (Supplementary Figure S9A), but sample size does 
improve pl̂et estimation (Supplementary Figure S9B and S9C).

Finally, we again performed log-likelihood profiling to 
examine Fit∂a∂i’s performance under different levels of sim-
ulated additive lethals. Here, we find that estimates of p̂let are 
consistently close to the true plet (Supplementary Figure S10). 
However, the average p̂let for 0% and 1% lethals are over-esti-
mates, likely due to the true parameter being near the bound-
ary of the parameter space. In conclusion, these results suggest 
that Fit∂a∂i performs reasonably well at inferring the propor-
tion of lethal mutations when they are assumed to be additive 
and when the functional form of the DFE is properly specified.

Using mutation-selection-drift balance to estimate the 
fraction of recessive lethals to estimate the fraction of new 
mutations that are recessive lethal, primarily due to violat-
ing the assumption of additivity. Although it is possible to 
extend Fit∂a∂i to infer the proportion of lethal mutations 
under a recessive model using the SFS, we have extremely lim-
ited information on the broader distribution of dominance 
coefficients in humans, which may confound inferences, par-
ticularly in limited sample sizes. Thus, we instead employ a 
fundamentally different approach for quantifying the fraction 
of new mutations that are recessive lethal using models of 
mutation–selection–drift balance.

We first explored predictions of this model using muta-
tion rate and coding sequence length estimates for humans 
(see Methods; Supplementary Table S3). When evaluating 
model predictions for a range of effective population sizes 
of N

e =  {20,000, 30,000, 60,000}, we consistently find that 
empirical estimates of the number of recessive lethals per dip-
loid in humans can be explained by a small proportion of 
new mutations being recessive lethal (Figure 3). Specifically, 
available evidence suggests that the average number of segre-
gating recessive lethal mutations in humans is roughly in the 
range of 0.6 to 1.6 per diploid (Gao et al., 2015; Narasimhan 
et al., 2016), and analytical predictions with <~0.5% of new 
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Figure 2. Parameters of the gamma distribution and the inferred distribution of fitness effects (DFE) under different levels of additive lethals. (A) 
Inference of the shape (a) and scale (β) parameters under a gamma DFE model from simulated data with different levels of additive lethals in a sample 
of size 1,000 haploid genomes. (B) Expected versus inferred DFE for each lethal percentage under a gamma DFE, percentages are increments of 
additive lethal mutations. Expected and inferred site frequency spectra used to fit the model are presented in Supplementary Figure S4. The DFE 
categories are defined as neutral (|s| = [0, 10−5)), nearly neutral (|s| = [10−5, 10−4)), slightly deleterious (|s| = [10−4, 10−3)), moderately 
deleterious (|s| = [10−3, 10−2)), and strongly deleterious (|s| = [10−2, 1]). Error bars correspond to the range of inferred proportions obtained across 
20 simulation replicates. 

Figure 3. Relationship between the percent of new mutations that are recessive lethal and the predicted number of segregating recessive lethals 
per diploid under mutation–selection–drift balance for humans and Drosophila melanogaster under varying effective population sizes. X-axis denotes 
the percent of new nonsynonymous mutations that are recessive lethal and Y-axis denotes the resulting number of segregating recessive lethals 
per diploid. Red shading indicates the range of empirical estimates of segregating recessive lethals for each species. For humans, these values are 
derived from Gao et al. (2015) and Narasimhan et al. (2016), and for Drosophila, these values are derived from Simmons and Crow (1977); Lynch and 
Walsh (1998); and McCune et al. (2002) (see Methods for details). Blue points on the “Humans” panel denote predictions based on simulations under 
a human demographic model with recent exponential growth and under varying levels of recessiveness. Note that analytical predictions are in good 
agreement with simulations when h = 0.0 or 0.001.
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nonsynonymous mutations being recessive lethal appear to 
approximate this range, regardless of the assumed effective 
population size. By contrast, analytical predictions with ~5% 
of new mutations being recessive lethal, a value that has 
recently been proposed (Kardos et al., 2021; Pérez-Pereira 
et al., 2022), suggest ~10–20 recessive lethal mutations per 
diploid, well outside of empirical observations (red-shaded 
region in Figure 3).

We next explored predictions of this model using mutation 
rate and coding sequence length estimates for D. melanogas-
ter (see Methods, Supplementary Table S3). We computed 
the expected number of recessive lethals per diploid assum-
ing three different effective population sizes Ne  =  {5 × 105, 
1  ×  106, 5  ×  106}, reflecting the range of estimated effec-
tive population sizes in the literature (Duchen et al., 2013; 
Sheehan & Song, 2016; Huber et al.. 2017; Li & Stephan, 
2006). Here, we again find that empirical estimates of segre-
gating recessive lethals can be explained by a small fraction of 
new mutations being recessive lethal (Figure 3). Specifically, 
available evidence suggests ~1–3 recessive lethals per diploid 
in D. melanogaster (Lynch & Walsh, 1998; McCune et al., 
2002; Simmons & Crow, 1977), which can be explained in 
our model by <~1% of new nonsynonymous mutations being 
recessive lethal, though results are dependent on the assumed 
effective population size (Figure 3). Importantly, a model 
where 5% of nonsynonymous mutations are assumed to be 
recessive lethal predicts ~9–27 recessive lethals per diploid, 
well beyond the empirical range for D. melanogaster.

Comparing predictions from mutation–selection–
drift balance to simulations
The mutation–selection–drift balance model employed above 
makes a number of assumptions that may not exactly hold. 
First, these models assume that populations are in demo-
graphic equilibrium. As this assumption does not hold for 
humans or D. melanogaster, we ran forward-in-time simula-
tions using SLiM 3 (Haller & Messer, 2019) under a nonequi-
librium demographic model to assess the impact of violations 
of this model assumption. We restrict this analysis to humans 
due to computational constraints.

When running simulations under a range of values for plet, 
we find that the number of recessive lethals observed at the 
end of this simulated demography mirrors that seen for an 
equilibrium population size of ~30,000 (dark blue circles in 
Figure 3). This is due to the fact that lethal mutations increase 
only modestly in frequency during recent and rapid exponen-
tial growth to Ne = 657,719 (Supplementary Figure S2). Thus, 
this result demonstrates that our analytical predictions for 
humans are reasonable despite not including this recent expo-
nential growth. Moreover, these results also suggest that ana-
lytical predictions for Drosophila using a wide range of Ne 
values are also a reasonable approximation for estimating plet.

Another assumption made by our analytical mutation–
selection–drift balance model is that lethal mutations are 
fully recessive (h = 0). Evidence suggests that some recessive 
lethal mutations may have some reduction in fitness in het-
erozygous carriers (Simmons & Crow, 1977). To explore how 
heterozygous effects could affect the estimates of pl̂et, we again 
simulated recessive lethal mutations in humans, but where 
h = 0.001 or h = 0.01. For a given plet, the number of recessive 
lethals per diploid decreases as h increases (lighter blue points 
in Figure 3). This is expected as selection against heterozy-
gotes is stronger with increasing h. When h = 0.001, p̂let still 

must be <1% to explain the observed number of recessive 
lethal mutations in humans. By contrast, results with h = 0.01 
suggest p̂let = ~2% for humans.

In summary, these results for humans and D. melanogaster 
consistently find that a small fraction (<~1%) of new nonsyn-
onymous mutations are likely to be recessive lethal. Although 
this model makes a number of simplifying assumptions, results 
are strikingly consistent across species and appear to be rel-
atively robust to nonequilibrium demography and reduced 
fitness in heterozygous carriers. Moreover, in both cases, we 
find that a proposed fraction of 4%–5% of new mutations 
being recessive lethal (Kardos et al., 2021; Pérez-Pereira et al., 
2022) predicts levels of segregating lethal variation that are 
well outside of empirical estimates. Thus, our results support 
an upper bound on the recessive lethal portion of the DFE, 
suggesting that no more than ~1% of new nonsynonymous 
mutations are recessive lethal.

Discussion
In this study, we have explored different approaches for esti-
mating the proportion of new mutations that are lethal. Our 
results demonstrate the limitations of SFS-based methods for 
detecting recessive lethal mutations, while also providing an 
estimate of the fraction of recessive lethal mutations based 
on models of mutation–selection–drift balance. Specifically, 
we show using simulations that a commonly used SFS-based 
method for DFE inference, Fit∂a∂i (Kim et al., 2017), cannot 
accurately quantify the proportion of new mutations that are 
recessive lethal (Table 1, Supplementary Figures S5 and S7). 
This result is not surprising, given that Fit∂a∂i assumes all 
mutations are additive by default, whereas our simulations 
assumed lethal mutations to be fully recessive (h = 0.0) and all 
other nonlethal deleterious mutations to be additive (h = 0.5). 
However, despite our inability to correctly infer the fraction of 
recessive lethals, we demonstrate that the presence of recessive 
lethals has a relatively minimal impact on inference of the dele-
terious nonlethal portion of the DFE, especially at low propor-
tions of recessive lethals (Figure 1). The performance of Fit∂a∂i 
in estimating the nonlethal part of the DFE may be aided by 
the fact that in our simulated data sets, nonlethal mutations 
have additive effects on fitness. Thus, to the extent that reces-
sive lethals do comprise a small portion of the DFE (Figure 3) 
and that the deleterious nonlethal portion of the DFE truly is 
additive and gamma distributed, our results suggest that exist-
ing estimates of this portion of the DFE are robust to the pres-
ence of lethals. This conclusion refutes the claim (Kardos et 
al., 2021) that the proportion of weakly deleterious and nearly 
neutral mutations has been overestimated in studies of the DFE 
using fewer than tens of thousands of individuals.

In reality, there is likely to be an inverse relationship 
between the selection coefficient of a mutation and its 
dominance coefficient, such that strongly deleterious muta-
tions are highly recessive and nearly neutral mutations are 
closer to additive (Agrawal & Whitlock, 2011; Huber et 
al., 2018). Our analysis largely ignores this complexity by 
assuming mutations to be either fully additive or fully reces-
sive. Future work on refining DFE estimates in humans and 
other species should incorporate this relationship between 
h and s, though doing so will require independent informa-
tion on h and s, something that represents a major challenge 
(Fuller et al., 2019; Huber et al., 2018). However, recent 
theoretical work suggests that combining information from 
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the SFS along with linkage disequilibrium may provide suf-
ficient power for obtaining a joint distribution of s and h 
(Ragsdale, 2022).

In contrast to our results for recessive lethals, we find that 
Fit∂a∂i can accurately infer the fraction of lethal mutations 
when they act in an additive manner. This result further 
emphasizes that the violation of dominance assumptions is 
the main factor hindering the estimation of recessive lethals. 
However, the extent to which additive lethals actually exist, 
and if so, at what abundance, remains unclear. For example, 
Dukler et al. (2022) attempted to quantify the number of new 
strongly deleterious mutations by examining sites depleted 
of variation in ~72,000 human genomes, obtaining an esti-
mate of ∼0.3–0.4 de novo strongly deleterious mutations per 
potential human zygote. However, the extent to which sites 
depleted of genetic variation reflects the presence of lethal 
mutations is not entirely clear. Demonstrating this, Agarwal 
& Przeworski (2021) used a similar approach by examining 
invariant methylated CpG sites in a sample of 390,000 human 
genomes, concluding that an additive mutation with a selec-
tion coefficient as small as s = −0.001 is sufficient to result in 
a lack of variation even in the large sample sizes they used. 
Thus, approaches for detecting lethal mutations based on 
genetic variation data may have inherent limitations not only 
in disentangling s from h, but also in separating lethal muta-
tions from mutations that are strongly deleterious though far 
from lethal (s on the order of −0.001 to −0.1).

Given the above challenges in quantifying recessive lethals 
using genetic variation data, we instead sought to obtain 
an estimate of the recessive lethal portion of the DFE by 
employing models of mutation–selection–drift balance. This 
approach leverages direct estimates of segregating recessive 
lethals in humans and D. melanogaster to provide an estimate 
of the fraction of new mutations that are recessive lethal. For 
both humans and Drosophila, we find that the observed num-
ber of segregating recessive lethals can be explained by <~1% 
of new nonsynonymous mutations being recessive lethal 
(Figure 3). This result implies a de novo mutation rate of 
~0.003 recessive lethal mutations per diploid human (assum-
ing a lethal mutation rate of 0.5%) and ~0.001 recessive 
lethal mutations per diploid fly (assuming a lethal mutation 
rate of 1%). Notably, when assuming 4%–5% of new non-
synonymous mutations to be recessive lethal, as recently sug-
gested (Kardos et al., 2021; Pérez-Pereira et al., 2022), these 
models predict levels of segregating recessive lethals that are 
well above those observed empirically (Figure 3). Thus, our 
results suggest that we can reject the proposal that the per-
centage of recessive lethals is as high as 4%–5% (Kardos et 
al., 2021; Pérez-Pereira et al., 2022).

Our approach based on mutation–selection–drift balance 
makes a number of simplistic assumptions, which could affect 
our results. First, mutation–selection–drift balance models 
assume that populations are at equilibrium, whereas both 
humans and D. melanogaster are known to have experienced 
recent exponential growth (Duchen et al., 2013; Gravel et 
al., 2011; Tennessen et al., 2012). We tested the impact of 
this assumption using SLiM simulations under a model of 
human demography. We found the actual increase in recessive 
lethal mutation frequencies lags somewhat behind the num-
ber predicted from the mutation–drift–selection balance in a 
model with exponential growth. Consequently, the number 
of recessive lethal mutations in a simulated human popula-
tion roughly reflects the equilibrium value for a population 

with N
e on the order of 30,000 (Figure 3), in agreement with 

results from Amorim et al. (2017). Although we were unable 
to conduct such simulations for D. melanogaster due to com-
putational limitations, these results suggest that our analytical 
model may also be a reasonable approximation for estimating 
plet in Drosophila.

Second, if recessive lethal mutations confer a fitness effect 
in the heterozygous state, then they may be found at lower 
frequency in the population than predicted by mutation–
drift–selection balance, which would require a higher plet 
to match the observed data. Comparison of our analytical 
model predictions with those from simulations for humans 
demonstrates relatively minimal impacts on recessive lethal 
allele frequencies for h = 0.001, but more substantial effects 
when h  = 0.01 (Figure 3). Although the precise dominance 
coefficient for lethal mutations in humans and other species 
remains poorly known, it is notable that a large heterozygous 
(h = 0.01) effect implies that the deleterious mutations also 
have a strong additive effect (hs < −0.01) and thus would have 
been detected in existing SFS-based studies of the DFE. For 
Drosophila, Huber et al. (2017) found that 0% of nonsyn-
onymous mutations have hs < −0.01, implying that recessive 
lethal mutations are highly recessive (h << 0.01).

Another important assumption made by our analysis is that 
recessive lethal mutations can only arise as nonsynonymous 
mutations. This appears to be a reasonable assumption as a 
first approximation, especially in light of evidence that reces-
sive lethal load does not appear to be influenced by genome 
size (McCune et al., 2002). However, it remains possible that 
lethal mutations can arise in other regions of the genome or 
as other types of mutations, such as in conserved noncoding 
regions, loss of function mutations, copy number variants, 
short tandem repeats, or transposable elements. As with our 
demographic assumptions, however, relaxing this assump-
tion to include a greater length of sequence or other types 
of mutations in our analysis would only further decrease the 
estimated fraction of new nonsynonymous mutations that are 
recessive lethal. Finally, numerous other factors could con-
tribute to recessive lethals segregating at higher levels than 
predicted by a simple model of mutation–selection–drift 
balance, such as epistasis, overdominance, and incomplete 
penetrance (Amorim et al., 2017; Ballinger & Noor, 2018). 
Thus, these factors suggest that our estimate of ~0.5% of new 
mutations being recessive lethal in humans likely represents 
an upper bound, implying that recessive lethals constitute 
a very small, though nevertheless important, portion of the 
nonsynonymous DFE.

In summary, our work investigates two alternative 
approaches for assessing the proportion of new mutations 
that are recessive lethal. Although we find that SFS-based 
approaches may not be well suited for detecting recessive 
lethal mutations, we find using an alternative approach based 
in mutation–selection–drift balance that recessive lethals 
comprise a very small portion of the DFE. These results 
have implications for understanding the prevalence of lethal 
mutations across organismal genomes, suggesting that only a 
small mutation rate of recessive lethals is needed to explain 
the observed numbers of segregating recessive lethals across 
diverse taxa. Moreover, this work also has important impli-
cations for modeling recessive lethal variation in humans and 
wild species, given that recessive lethals are an essential deter-
minant of inbreeding depression and genetic load (Hedrick & 
Garcia-Dorado, 2016; Kyriazis et al., 2022).
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