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abstract: Deleterious genetic variation is abundant in wild pop-
ulations, and understanding the ecological and conservation im-
plications of such variation is an area of active research. Genomic
methods are increasingly used to quantify the impacts of deleteri-
ous variation in natural populations; however, these approaches
remain limited by an inability to accurately predict the selective
and dominance effects of mutations. Computational simulations
of deleterious variation offer a complementary tool that can help
overcome these limitations, although such approaches have yet to
be widely employed. In this perspective article, we aim to encourage
ecological and conservation genomics researchers to adopt greater
use of computational simulations to aid in deepening our under-
standing of deleterious variation in natural populations. We first
provide an overview of the components of a simulation of deleteri-
ous variation, describing the key parameters involved in suchmodels.
Next, we discuss several approaches for validating simulationmodels.
Finally, we compare and validate several recently proposed deleteri-
ous mutation models, demonstrating that models based on estimates
of selection parameters from experimental systems are biased toward
highly deleterious mutations. We describe a new model that is sup-
ported by multiple orthogonal lines of evidence and provide example
scripts for implementing this model (https://github.com/ckyriazis
/simulations_review).

Keywords: computational simulations, deleterious mutations, distri-
bution of fitness effects, genetic load, inbreeding depression, popula-
tion genetics.

Introduction

Newmutations are constantly entering a population, some
fraction of which are deleterious to organismal fitness (Eyre-
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Walker and Keightley 2007; Keightley 2012). The burden
of deleterious variation carried by a population is referred
to as its “genetic load,” defined as the reduction in fitness
due to segregating and fixed deleterious mutations (Muller
1950; Agrawal and Whitlock 2012; Hedrick and Garcia-
Dorado 2016). Genomicmethods are now commonly used
to characterize deleterious variation in wild populations
(Kardos et al. 2016; Díez-del-Molino et al. 2018; Bertorelle
et al. 2022), although the best approaches for leveraging
such datasets to estimate genetic load remains an active
area of research. In particular, empirical measures of puta-
tively deleterious variation have seen increased use in con-
servationgenomics studies (Bertorelle et al. 2022); however,
these measures remain relatively crude and are often chal-
lenging to interpret (Cooper and Shendure 2011; She and
Jarosz 2018; Huber et al. 2020; Sandell and Sharp 2022).
In light of the limitations of empirical measures of dele-

terious variation and genetic load, the aim of this review is
to encourage more ecological and conservation genomics
researchers to employ computational genetic simulations.
To that end, we first provide an overview of simulations of
deleterious genetic variation, discussing the key parameters
involved and how such methods can be used to model ge-
netic load. Next, we discuss several approaches for validat-
ing these models, either by comparing predicted and ob-
served patterns of genetic variation or by comparing the
predicted inbreeding load to an estimate for a given species.
Using this validation approach for three recently proposed
deleterious variationmodels, we thendemonstrate thatmod-
els based on experimental estimates of selection parameters
are biased toward highly deleterious mutations. Finally, we
propose a new model that is supported by several orthog-
onal sources of evidence and conclude with a discussion
of future directions in the field. Our hope is that this
of Chicago. All rights reserved. Published by The University of Chicago Press
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review will provide useful information for researchers
aiming to incorporate simulation-based approaches into
genomic studies of load, enabling more comprehensive
assessments of the ecological and conservation relevance
of deleterious genetic variation.
Defining Genetic Load

Understanding the implications of genetic load for organ-
ismal fitness and population viability is a topic of long-
standing interest in population and conservation genetics
(Haldane 1937; Muller 1950; Morton et al. 1956; Kimura
et al. 1963; Agrawal andWhitlock 2012; Henn et al. 2015;
Hedrick and Garcia-Dorado 2016). Several definitions of
genetic load have been put forth in the literature recently,
often with the aim of partitioning genetic load into “real-
ized” and “potential” load (e.g., Mathur and DeWoody
2021; Bertorelle et al. 2022). Here, we adhere to the defi-
nition of genetic load as the realized reduction in mean
fitness in a population due to segregating and fixed dele-
terious mutations (note that “mutation load” typically
refers only to mutations segregating under mutation-
selection balance; Muller 1950; Agrawal and Whitlock
2012). The genetic load of a population at a single locus
i (Li) is given by

Li p 2hsq 12 qð Þ1 sq2, ð1Þ

where s is the selection coefficient of a mutation, h is the
dominance coefficient, and q is the mutation frequency
(Agrawal and Whitlock 2012). Here, we parameterize fit-
ness assuming that homozygous mutant individuals have
a fitness of 12 s and heterozygous individuals have fitness
12 hs, such that s is positive for deleterious mutations. In
equation (1), the effect of deleterious mutations found as
heterozygotes is captured by the 2hsq(12 q) term, and
the effect of homozygous deleterious mutations is cap-
tured by the sq2 term. For fixed mutations (q p 1:0), the
genetic load is therefore equal to s. Genetic load at a single
locus can be related to mean population fitness at locus i
( �Wi) as �Wi p 12 Li. When assuming that fitness is mul-
tiplicative across sites (i.e., ignoring epistasis and linkage
disequilibrium), the mean genome-wide genetic load of
a population can be obtained by multiplying �Wi across
sites, such that Ltotal p 12 ∏ �Wi. Thus, the units of ge-
netic load are in terms of multiplicative fitness scaled from
0 to 1.
Another important quantity for understanding the im-

pacts of deleterious variation is the inbreeding load, which
quantifies the rate at which fitness is lost under increasing
levels of inbreeding (Morton et al. 1956; Hedrick and
Garcia-Dorado 2016). Unlike the genetic load, the inbreed-
ing load is measured in terms of lethal equivalents, which
represent a summed quantity of s for recessive deleterious
mutations that aremasked as heterozygotes. For a randomly
mating population, the inbreeding load at a single locus i (Bi)
is given by (Morton et al. 1956)

Bi p sq2 sq2 2 2hsq 12 qð Þ p sq2 Li: ð2Þ

This equation demonstrates that the inbreeding load at a
single locus is determined by the frequency and fitness ef-
fect of a mutation (sq) minus the effects that are expressed
as homozygotes (sq2) and heterozygotes (2hsq(12 q)). To
calculate the total inbreeding load across a diploid genome
(2B), this quantity can be summed across sites with dele-
terious mutations and multiplied by 2 to account for dip-
loidy, such that 2B p 2

P
Bi.

These fundamental principles demonstrate that an es-
sential component of estimating the genetic load and in-
breeding load (hereafter referred to together as “load”)
using genetic variation data is knowing s and h for indi-
vidual mutations. However, although some progress has
been made in predicting whether a mutation is likely to
be neutral or deleterious (e.g., Cooper et al. 2005; Kumar
et al. 2009; Choi et al. 2012; Cingolani et al. 2012; Kircher
et al. 2014), accurately predicting h and s for individual
mutations in genomic sequencing data remains a major
challenge, even in humans and model organisms (Cooper
and Shendure 2011; She and Jarosz 2018; Huber et al.
2020; Sandell and Sharp 2022). For example, a recent sim-
ulation study demonstrated that genomic evolutionary
rate profiling (GERP; Cooper et al. 2005), a popular method
for predicting the deleterious effect of mutations based
on evolutionary conservation, cannot reliably distinguish
weakly deleterious mutations from strongly deleterious
mutations (Huber et al. 2020), although the method is
commonly used for this purpose (e.g., Henn et al. 2016;
Marsden et al. 2016; Van Der Valk et al. 2019; Dussex
et al. 2021). Similarly, experimental studies in yeast have
found that methods such as SIFT (Kumar et al. 2009) and
PROVEAN (Choi et al. 2012) are poor predictors of the fit-
ness effect of a mutation (She and Jarosz 2018; Sandell and
Sharp 2022) that provide only crude proxies of s.Moreover,
these methods do not provide any information on domi-
nance, an essential component of quantifying load. These
limitations are unlikely to be fully overcome, particularly
for nonmodel organisms, implying that methods for quan-
tifying load based on sequence data will remain somewhat
crude approximations for the foreseeable future.
Overview of Simulation-Based Approaches

Computational simulations using evolutionary models
provide an alternate way of quantifying load that alleviates
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many of the limitations discussed above. Simulations are
widely used in population genetics (e.g., Marjoram and
Donnelly 1994; Akey et al. 2004; Ramachandran et al.
2005; Fu et al. 2014; Harris and Nielsen 2016; Henn et al.
2016; Uricchio et al. 2016; Adrion et al. 2020a) yet remain
underused in ecological and conservation genomics. His-
torically, this may be due to a relative lack of simulation
tools capable of modeling ecologically realistic scenarios
and an often steep learning curve for using simulation soft-
ware that may be poorly documented (Hoban et al. 2012).
However, many of these challenges have been addressed
by the forward-in-time genetic simulation program SLiM
(Haller and Messer 2016, 2019, 2023), which offers a flex-
ible array of models incorporating realistic ecological dy-
namics as well as comprehensive documentation and a
graphical user interface. Other similar programs include
Nemo (Guillaume and Rougemont 2006; Cotto et al. 2020)
and SimBit (Matthey-Doret 2021), both of which have been
applied in a conservation genetics context (Grossen et al.
2020; Grummer et al. 2022). Finally, another important re-
cent advance in simulation software in population genetics
is the growth of simulation resources through the PopSim
consortium (Adrion et al. 2020a; Lauterbur et al. 2023), in-
cluding a library of demographic models, recombination
maps, and other useful simulation parameters for a grow-
ing number of species.
Simulations are broadly useful in evolutionary genetics

because they can serve the critical function of revealing
which evolutionary scenarios are consistent with observed
patterns of genetic variation. All studies of genetic varia-
tion in natural populations suffer from the limitation that
they observe a single outcome of a stochastic evolutionary
process, where underlying mechanisms are largely unob-
servable. Simulations allow researchers to model this evo-
lutionary process and determine which mechanisms (e.g.,
genetic drift, gene flow, selection, migration) are needed to
explain observed patterns of variation in a dataset. More-
over, the process of using simulations can be extremely
valuable for developing intuition on how various evolution-
ary forces interact to influence patterns of genetic variation,
improving the ability of researchers to design evolutionary
genetics studies and interpret their results.
For studies aiming to assess the ecological and conserva-

tion relevance of deleterious variation, simulations can be
especially useful for quantifying load, which can be directly
tabulated from the simulation output (see sec. 1 of the sup-
plemental PDF). Simulations can therefore be used to com-
plement empirical measures of load, providing a frame-
work in which to interpret observed patterns and verify
that they are expected under a plausible evolutionarymodel.
Moreover, simulations can go beyond empirical measures
by projecting load under various future scenarios, illuminat-
ing how actions in the present day may impact load decades
or centuries from now. Finally, modern simulation tools,
such as the ecologically realistic models supported by SLiM
(Haller and Messer 2019, 2023), also offer the potential to
conduct an analysis of future extinction risk while incorpo-
rating genome-scale genetic variation (e.g., Robinson et al.
2022), analogous to the population viability analysis ap-
proaches that have long been employed in conservation ge-
netics (e.g., Lacy 1993, 2019; Beissinger andWestphal 1998;
Brook et al. 2000).
In summary, simulation-based approaches have much

to offer for genomic studies of deleterious variation in wild
populations, yet their application remains relatively limited.
In table 1, we have summarized existing studies that employ
simulations along with genomic analyses to investigate load
in organisms ranging fromAlpine ibex toChinese crocodile
lizards.We suggest that future research should incorporate
similar approaches to those implemented in these studies
to provide a more thorough investigation of load in wild
populations.
What Are the Components of a Simulation
of Deleterious Genetic Variation?

Modeling deleterious genetic variation in a simulation frame-
work at a minimum requires specifying a population his-
tory, mutation rate, recombination rate, deleterious muta-
tion target size, and distribution of selection and dominance
coefficients (table 2). The extent to which these parameters
need to be tailored to a focal organism will vary depending
on the researcher’s objectives. Many studies may focus on
using simulations primarily to explore qualitative dynamics
of deleterious variation under various demographic and ge-
netic scenarios. For example, onemaybe interested in asking:
what are the qualitative effects of a bottleneck on genetic load
under two extreme scenarios where deleterious mutations
are either additive or fully recessive? For these studies, tailor-
ing the simulation parameters to the focal organismmay not
be crucial, so long as the chosen parameters are reasonable.
For studies aiming to make more quantitative state-

ments about genetic load or project future population trends,
tailoring simulation parameters to the focal organism may
be more critical. For example, demographic history can
vary widely between populations and has a large influence
on deleterious genetic variation. Thus, having a reliable de-
mographic model is a crucial factor in modeling load. For-
tunately, historical demographic parameters can be readily
inferred from genomic datasets, although estimating re-
cent demography (i.e., during the last tens or hundreds of
generations) remains challenging (Beichman et al. 2018;
Nadachowska-Brzyska et al. 2022). Importantly, computa-
tional simulation models need not assume that populations
are at mutation-selection-drift equilibrium. However, it is
typical to run a burn-in for forward-in-time simulations
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to reach equilibrium levels of genetic diversity in an ances-
tral population beforemodeling subsequent population size
changes, when the population is no longer at equilibrium.
This ability to model nonequilibrium dynamics is a key ad-
vantage of simulation approaches, as most natural popula-
tions are likely not at equilibrium, although many classic
analytical results in population genetics assume equilibrium
conditions (Brandvain and Wright 2016).
The mutation rate is another essential component in-

fluencing levels of deleterious variation in a population,
Table 2: Evolutionary forces relevant to modeling load and how these forces impact load
Evolutionary force
 Impact on genetic load
 Impact on inbreeding load
Population size (N)
 Decrease with increasing N
 Increase with increasing N

Mutation rate (m)
 Increase with increasing m
 Increase with increasing m
Deleterious mutation target size (G)
 Increase with increasing G
 Increase with increasing G

Distribution of fitness effects (s)
 Depends on N a
 Increase with increasing mean s

Dominance distribution (h)
 Increase as h increases from 0 to .5
 Decrease as h increases from 0 to .5

Recombination rate (r)
 Decrease with increasing r
 Decrease with increasing r
a Note that under classical models of mutation load, due to mutations segregating under mutation-selection balance, s does not impact load. However, this
result does not hold when considering fixed mutations and finite population size. See Kimura (1963) for a detailed analysis of the effects of s, h, and N on
genetic load.
Table 1: Recent studies combining simulations with empirical genomic data to explore impacts of small population size on delete-
rious variation in nonhuman species
Study
 Organism

Simulation
software
 DFEs
 Question addressed with simulations
Beichman et al. 2023
 Sea otter
 SLiM
 Kim et al. 2017a
 How has the fur trade bottleneck
impacted genetic load in the sea
otter?
Dussex et al. 2021
 Kākāpō
 SLiM
 Mean s p .024b
 Has purging occurred in the Stewart
island kākāpō population?
Grossen et al. 2020
 Alpine ibex
 nemo
 Mean s p .01b
 How has deleterious variation been
impacted by a recent human-
mediated bottleneck?
Kyriazis et al. 2023a
 North American moose
 SLiM
 Kim et al. 2017a
 How have bottlenecks influenced
purging and genetic load in North
American moose?
Marsden et al. 2016
 Domestic dog
 PReFerSim
 Boyko et al. 2008
 How has the domestication bottle-
neck shaped deleterious variation
in dogs?
Robinson et al. 2018
 Channel island fox
 SLiM
 Kim et al. 2017
 How has deleterious variation been
impacted by small population size
in island foxes?
Robinson et al. 2019
 Gray wolf
 SLiM
 Kim et al. 2017
 How does the large North American
wolf population size influence
recessive deleterious variation?
Robinson et al. 2022
 Vaquita
 SLiM
 Estimated by authorsa
 Are vaquitas doomed to extinction
by inbreeding depression?
Stoffel et al. 2021
 Soay sheep
 SLiM
 Eyre-Walker et al. 2006c
 Are short runs of homozygosity
purged of deleterious variation?
Takou et al. 2021
 Arabodopsis lyrata
 PReFerSim
 Estimated by authors
 Do range-edge populations have
elevated genetic load?
Xie et al. 2022
 Chinese crocodile lizard
 SLiM
 Kim et al. 2017
 Have population declines resulted
in purging?
a Sensitivity analysis conducted with additional distribution of fitness effects (DFE).
b Mean for gamma distribution, not based on explicit analysis.
c The DFE uses shape parameter from Eyre-Walker et al. (2006) and mean s of 0.01, 0.03, and 0.05.
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although high-quality mutation rate estimates (i.e., based
on a large number of sequenced trios) do not exist for
the vast majority of species (although see Bergeron et al.
2023). However, mutation rates can also be estimated from
substitution rates between species, an approach that is now
widely feasible given the abundance of whole-genome se-
quencing data (Lynch et al. 2016). Recombination rates
can also influence load, as negative selection against dele-
terious alleles may be impeded in regions of low recombi-
nation (Charlesworth 2012; Berdan et al. 2021; Sianta et al.
2023). To model these dynamics for a species of interest, a
growing number of approaches exist for estimating recom-
bination rates from genomic datasets from as little as one
diploid individual (e.g., Barroso et al. 2019; Adrion et al.
2020b). Tailoring the genome structure (i.e., the length
and number of genes and the extent of noncoding delete-
rious variation, which together determine the deleterious
mutation target size) of a simulation to a specific organism
can also be an important component of a simulation, par-
ticularly for studies aiming to model population dynamics
due to the total impact of deleterious mutations. To aid in
this, a growing number of annotated reference genomes
are now available, which can provide useful information
on genome structure, particularly for protein-coding re-
gions of the genome (Paez et al. 2022).
Finally, the joint distributions of selection and domi-

nance coefficients are essential components of modeling
deleterious variation and load. These distributions deter-
mine the effect that new mutations exert on fitness, as well
as the corresponding dominance coefficient of a mutation.
Although there is broad agreement that strongly deleteri-
ous mutations tend to be highly recessive, the parameters
of the distribution of dominance coefficients remain espe-
cially poorly known (Simmons and Crow 1977; Caballero
and Keightley 1994; García-Dorado and Caballero 2000;
Agrawal and Whitlock 2011; Huber et al. 2018). Much
more is known about the distribution of selection coeffi-
cients for new mutations, often termed “the distribution
of fitness effects” (DFE), although most studies remain fo-
cused on humans andmodel organisms such asDrosophila
(Eyre-Walker and Keightley 2007; Huber et al. 2017; Kim
et al. 2017; fig. 1). Given the importance of the DFE for
simulations of deleterious variation as well as recent debate
over DFE parameters (Kardos et al. 2021; Pérez-Pereira
et al. 2021; Garcia-Dorado andHedrick 2022; Pérez-Pereira
et al. 2022; Kyriazis et al. 2023b), below we provide a more
detailed review of this topic.
What Is the DFE and How Is It Estimated?

The DFE is a probability distribution that quantifies the se-
lective effect (s) of new mutations entering the population,
that is, what fraction of new mutations are adaptive, neu-
tral, weakly deleterious, or strongly deleterious. Here, we fo-
cus our discussion on the deleterious portion of the DFE,
given that adaptive mutations do not contribute to load.
Importantly, the DFE is not an estimate of s for segregating
variation and therefore does not directly quantify load (see
sec. 1 of the supplemental PDF; figs. S1, S2), a misconcep-
tion that has recently spread in the literature (e.g., Jones
et al. 2020; Kutschera et al. 2020). Instead, the fate of a mu-
tation after it enters a population and whether it will segre-
gate and potentially reach fixation will be influenced by se-
lection as well as the stochastic effects of genetic drift and
linkage. Thus, quantifying segregating variation and load
using the DFE requires modeling these effects under a
given demographic model (for an example, see sec. 1 of the
supplemental PDF; figs. S1, S2).
Historically, the DFE was estimated primarily using ex-

perimental mutation accumulation approaches (Mukai 1964;
Simmons and Crow 1977; Eyre-Walker and Keightley 2007;
Halligan and Keightley 2009). However, these approaches
are limited to detecting the small fraction of deleterious
mutations that have large enough effects to be observed
in a laboratory setting (although typically excluding le-
thals; Davies et al. 1999; Eyre-Walker and Keightley 2007;
Halligan and Keightley 2009; see sec. 2 of the supplemen-
tal PDF; table S1). These limitations motivated the de-
velopment of sequence-based approaches for estimating
the DFE over the past two decades (Eyre-Walker and
Keightley 2007). Sequence-based methods estimate the
DFE on the basis of differences in the synonymous (as-
sumed to be neutral) and nonsynonymous (assumed to
be primarily neutral and deleterious) site frequency spectra
(SFS), a summary of allele frequencies in a sample (Eyre-
Walker et al. 2006; Eyre-Walker and Keightley 2007;
Boyko et al. 2008; Kim et al. 2017; Tataru et al. 2017; see
sec. 2 of the supplemental PDF). Specifically, these meth-
ods typically use the synonymous SFS to account for neu-
tral demographic effects and, conditioning on inferred de-
mographic or nuisance parameters, then estimate the
parameters of the distribution of s for new nonsynonymous
mutations (most commonly, themean and shape parameters
of a gamma distribution). Thus, although these approaches
have much greater power for estimating the weakly delete-
rious portion of the DFE, existing sequence-based DFEs
are generally limited to nonsynonymous single-nucleotide
variants (although see Torgerson et al. 2009). Finally, one
important limitation of sequence-based approaches is that
they typically assume that all mutations have additive ef-
fects on fitness, given that information on the distribution
of dominance coefficients is very limited (although see
Huber et al. 2018). Consequently, sequence-based DFE
approaches may not be well powered for estimating the
relatively small portion of the DFE that is highly recessive
and strongly deleterious, including recessive lethals (Wade
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et al. 2023). See section 2 of the supplemental PDF for
a detailed discussion of the nuances and limitations of
sequence-based versus experimental methods to infer the
DFE.
A growing number of studies have used sequence-based

methods to estimate the DFE for nonsynonymous muta-
tions in various taxa, including humans, nonhuman pri-
mates, mice,Arabidopsis,Drosophila, and the highly endan-
gered vaquita porpoise (Eyre-Walker et al. 2006; Boyko et al.
2008; Ma et al. 2013; Chen et al. 2017; Huber et al. 2017,
2018; Kim et al. 2017; Tataru et al. 2017; Castellano et al.
2019; Robinson et al. 2022; fig. 1). In general, these studies
estimate a relatively high proportion of weakly deleterious
mutations (here defined as s ! 1e23). These sequence-
based estimates are also in agreement with a broad literature
in population genetics and functional genomics suggesting
that the majority of nonsynonymous mutations have rela-
tively minimal effects on fitness (Cassa et al. 2017; Agarwal
and Przeworski 2021; Kruglyak et al. 2022; Agarwal et al.
2023). Another finding from sequence-based DFE studies
is that the fraction of new mutations that are weakly dele-
terious appears to vary among major taxonomic groups.
For example, studies in mammals generally estimate ∼50%
ofmutations as weakly deleterious, whereas studies inArabi-
dopsis,Drosophila, and yeast suggest that180% of new non-
synonymousmutations areweakly deleterious (fig. 1). Com-
parative analyses of the DFE have suggested that such
differences may be related to species complexity (Huber
et al. 2017) as well as life history traits, such as selfing
(Arunkumar et al. 2015; Chen et al. 2017).
How Can We Validate Simulation Models?

As can be seen from the above discussion, there are many
different parameters in a model of deleterious variation,
and the estimation of each of these parameters often comes
with some uncertainty. Moreover, such parameter esti-
mates do not exist for the vast majority of species, which
may result in researchers employing parameter estimates
from other (ideally, closely related) species. Given these
many potential sources of uncertainty, an important step
in formulating a simulation model is ensuring that it is rea-
sonable with some form of validation (Lotterhos et al. 2022).
One approach for validating a simulation model is to

test whether patterns of genetic variation generated under
the model agree with patterns observed in an empirical ge-
nomic dataset. Various summary statistics can be useful for
this exercise. Examination of the simulated and observed
SFS can be particularly informative, as the SFS captures
all allele frequency information in a dataset and is therefore
a rich source of information for model validation (Schrai-
ber and Akey 2015; Ragsdale et al. 2018). Comparing sim-
ulated versus observed heterozygosity, which is itself a
summary of the SFS, can also be informative as a simple
test of whether a model can predict basic aspects of an ob-
served dataset. Additionally, in populations where in-
breeding is present, comparing the observed and simulated
distribution of runs of homozygosity can provide valuable
information on whether the demographic parameters of a
model are reasonable (for an example, see Kyriazis et al.
2023a). Finally, examining patterns of linkage disequilibrium
may also be useful, as patterns of linkage disequilibrium
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Figure 1: Representative estimates of the distribution offitness effects from sequence-based approaches. Distributions are plotted in discrete bins of
weakly deleterious (0 ! s ! 0:001), moderately deleterious (0:001 ≤ s ! 0:01), strongly deleterious (0:01 ≤ s ! 0:1), semilethal (0:1 ≤ s ! 0:99),
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represent a valuable source of information that is not con-
tained in the SFS (Schraiber and Akey 2015; Ragsdale et al.
2018).
Such comparisons between simulated and empirical pat-

terns of genetic variation can give some reassurance that
a model is reasonable. However, for models that aim to ex-
amine ecological population dynamics due to genome-
wide effects of deleterious variation, it may be important
to also assess whether a model agrees with more direct,
field-based estimates of fitness. For most species, this can
pose amajor challenge, as the long-term observational data
that are typically required for measuring fitness remain
rare (Sheldon et al. 2022). Moreover, another major hurdle
is that comparing model-based predictions of genetic load
to field-based estimates is not straightforward, as an em-
pirical estimate of genetic load requires the existence of a
“mutant-free” reference genotype where deleterious muta-
tions are absent (Agrawal and Whitlock 2012; Robinson
et al. 2023). Given that all organisms are burdened to
some degree by deleterious mutations, this problemmakes
quantifying genetic load empirically a near-impossible task
(Agrawal and Whitlock 2012).
A more feasible approach for comparing the effects of

deleteriousmutations between amodel and empiricalmea-
surements of fitness is to examine the predicted inbreeding
load. As described above, the inbreeding load quantifies the
rate at which fitness is lost in a population as levels of in-
breeding increase (Morton et al. 1956; Keller and Waller
2002; Hedrick and Garcia-Dorado 2016). This quantity
can be measured empirically in systems where estimates
of fitness and the inbreeding coefficient exist at an individ-
ual level (note that these individual-level data provide a
population-level estimate of the inbreeding load; for a de-
tailed evaluation of common methodological approaches
for measuring the inbreeding load, see Nietlisbach et al.
2019). Thus, for species where such empirical estimates
of the inbreeding load exist, it may be possible to compare
these empirical estimates to those derived from a simula-
tionmodel as ameans to further validatemodel parameters.
However, there are several potential hurdles in compar-

ing observed and predicted inbreeding load for model val-
idation. First, empirical estimates of the inbreeding load
do not exist for the vast majority of populations or species;
thus, it is unlikely that an estimate is available for model
validation in a given population of interest. Second, even
in cases where empirical estimates of the inbreeding load
do exist, often they are not reliable (Nietlisbach et al. 2019).
Accurately estimating the inbreeding load is not a trivial
task: it requires large sample sizes; accurate estimates of
the inbreeding coefficient, ideally from genomic data; high
variance in inbreeding in a population; and a reliable proxy
for fitness (Kalinowski andHedrick 1999; Nietlisbach et al.
2019). Relatively few studies exist that combine all of these
elements, leading to wide variance in available estimates
(for further discussion, see sec. 3 of the supplemental PDF).
Given these challenges, another approach may be to

compare model-based predictions of the inbreeding load
to empirical estimates that are averaged across populations
or species. For instance, one widely cited estimate of the
median diploid inbreeding load (2B) for juvenile survival
in mammals is 2B p 3:1, derived from an analysis of 40
captive mammalian populations (Ralls et al. 1988). More
recently, an analysis of the “total” inbreeding load in wild
vertebrates proposed a much higher 2B p 12, based on
data from 12 primarily bird species (O’Grady et al. 2006).
However, this estimate was shown to be upwardly biased
and unreliable because of issues with the statistical methods
and underlying datasets (Nietlisbach et al. 2019; see sec. 3
of the supplemental PDF). Given these issues, Nietlisbach
et al. (2019) conducted a reanalysis and found amedian in-
breeding load for survival to sexual maturity in wild verte-
brates of 2B p 4:5. This value may serve as a useful point
of comparison for validating model-based predictions.
However, we emphasize that the inbreeding load of a given
population is expected to vary on the basis of its genomic
and demographic characteristics; thus, model-based pre-
dictions may often be higher or lower than this estimate.
Additional reliable estimates of the inbreeding load in wild
populations will be valuable for further validating models
in the future.
Validating Recent Deleterious Mutation Models

A great deal of recent debate has been concerned with the
parameterization of models of deleterious variation (Kar-
dos et al. 2021; Pérez-Pereira et al. 2021, 2022; Garcia-
Dorado and Hedrick 2022; Kyriazis et al. 2023b). Much
of this debate has occurred in response to the model em-
ployed by Kyriazis et al. (2021), a model that aimed to re-
flect deleterious mutation parameters in canids. Specifically,
this model employed a genome structure consisting of
30Mb of coding sequence across 38 different chromosomes
as informed by the structure of the dog genome (Lindblad-
Toh et al. 2005), yielding an overall rate of deleterious mu-
tation of U p 0:42 per individual (for details, see sec. 4 of
the supplemental PDF). Since estimates of selection and
dominance parameters do not exist for canids, this model
also employed a sequence-based DFE estimated from hu-
mans by Kim et al. (2017) and a dominance distribution
that was proposed for humans by Henn et al. (2016; fig. 2;
table 3; for details, see sec. 4 of the supplemental PDF).
These parameters were criticized by Kardos et al. (2021)

and Pérez-Pereira et al. (2022), both of whom argued that
the Kim et al. (2017) DFE did not reflect the high propor-
tion of strongly deleterious variation inferred from exper-
imental studies. Additionally, these authors also criticized
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the dominance distribution based on Henn et al. (2016) as
being too recessive (fig. 2). Kardos et al. (2021) and Pérez-
Pereira et al. (2022) instead proposed DFEs with a much
greater proportion of highly deleterious alleles (here de-
fined as s 1 0:01) and dominance distributions that are
far less recessive, loosely based on experimental results
(fig. 2; table 3; for details, see sec. 4 of the supplemental
PDF). These DFEs suggest that a largemajority of newmu-
tations are highly deleterious (∼67% for Kardos et al. 2021;
∼71% for Pérez-Pereira et al. 2022; fig. 2), in stark contrast
to all existing sequence-based estimates for nonsynonymous
mutations in diverse plant and animal taxa (fig. 1). Finally,
these authors also propose varying deleteriousmutation rates
compared with Kyriazis et al. (2021), with Kardos et al.
(2021) assumingU p 1:2 and Pérez-Pereira et al. (2022) as-
suming U p 0:4 (table 3).
It is not surprising that the sequence-based DFE para-

meters estimated by Kim et al. (2017) and employed by
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Figure 2: Comparison of distribution of fitness effects (DFE) and dominance models employed by Kyriazis et al. (2021), Kardos et al. (2021),
and Pérez-Pereira et al. (2022), as well as the model described in this study. A, DFEs of new deleterious mutations for each model. B, Distribution
of dominance coefficients for each respective model. Note that the dominance distribution from Pérez-Pereira et al. (2022) assumes a distribution
of h for each value of s (see sec. 4 of the supplemental PDF). See table 3 for more details on these models.
Table 3: Comparison of distribution of fitness effects (DFE), dominance, and mutation rate parameters
Model
 Mean s
 Shape
 Lethals (%)
 Mean h
 U
Kyriazis et al. 2021
 .0131
 .186
 0
 .18
 .42

Kardos et al. 2021
 .05
 .1
 5
 .31
 1.2

Pérez-Pereira et al. 2022
 .2
 .33
 0
 .28
 .4

This study
 .0131
 .186
 .3
 .28
 .63
Note: Note that the mean s and shape are for parameterizing a gamma distribution, and “lethals” denotes an additional proportion of recessive
lethals augmented to the gamma distribution. Mean h denotes the mean dominance coefficient for new mutations under each DFE (note that this
value is impacted by the assumedDFE, asDFEs withmore strongly deleteriousmutations will tend to have amore recessivemean hwhen keeping the
distribution of h constant). U represents the diploid genomic deleterious mutation rate from each of these models.



Modeling Load in Natural Populations 000
Kyriazis et al. (2021) do not agree with experimental esti-
mates of the DFE. As noted above, experimental estimates
are well known to be biased toward highly deleterious var-
iation, as the impacts of more weakly deleterious alleles
may go undetected in an experimental setting (Davies et al.
1999; Eyre-Walker and Keightley 2007). To quantitatively
demonstrate the implications of such extreme selection
parameters, we compared these three proposed models
in terms of whether the predicted nonsynonymous SFS
from these models agrees with the observed SFS from a
large sample of human genomes from the 1000G dataset
(Auton et al. 2015; for details, see sec. 5 of the supplemental
PDF). As described above, the SFS is a useful tool formodel
validation, as it summarizes all allele frequency informa-
tion in a sample. Given that Kardos et al. (2021) and
Pérez-Pereira et al. (2022) claim that their models are ap-
plicable to mammals, their models should predict patterns
of genetic variation that are consistent with those seen in
humans.
When running SLiM simulations under a human demo-

graphic model and outputting the simulated SFS (see sec. 5
of the supplemental PDF; fig. S3), we find that the pre-
dicted patterns of genetic variation from the Kardos et al.
(2021) and Pérez-Pereira et al. (2022) models are not con-
sistent with those observed in humans. Specifically, the
nonsynonymous SFS from these models is greatly shifted
toward rare variation, with a largemajority of variants pre-
dicted to be singletons (variants with a count of one in the
sample; fig. 3; table S2). For instance, the Kardos et al.
(2021) model yields ∼76% of variants as singletons, and
the Pérez-Pereira et al. (2022) model yields ∼71% as sin-
gletons (table S2). However, only ∼57% of variants are
singletons in the 1000G dataset (table S2). This surplus
of rare variation is due to the very strong predicted effects
of negative selection under these models, which results in
deleterious alleles being held at extremely low frequency.
By contrast, the Kyriazis et al. (2021) model makes predic-
tions that are in good agreement with observed patterns in
humans, with ∼54% of variants predicted to be singletons
(fig. 3; table S2; for further discussion, see sec. 5 of the supple-
mental PDF). Overall, these results further confirm previous
findings that experimentally derived selection parameters
are biased toward highly deleterious variation. Additionally,
although our comparison here focuses on humans, the
similarity between sequence-based human DFE estimates
and those from other mammalian species (fig. 1) suggests
that similar results would be obtained when comparing
model predictions to patterns of genomic variation in other
taxa.
As another approach for validating these models, we

compared the predicted inbreeding load from each model
to empirical estimates of the inbreeding load in humans.
Several estimates of the inbreeding load are available in hu-
mans, including an estimate of 2B p ∼4 from Morton
et al. (1956) and 2B p 1:4 from Bittles and Neel (1994).
Additionally, Gao et al. (2015) estimated ∼0.6 recessive le-
thal mutations per human, which represents the fraction
of the inbreeding load that is due to lethal mutations. To
assess which models are consistent with these estimates
in humans, we again ran simulations under a human de-
mographic model (fig. S4). For each model, we assumed
the genomic deleterious mutation rate proposed by each
article (table 3). However, we also present results using
the same human mutational parameters for all models
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Figure 3: Predicted proportional nonsynonymous site frequency spectra (SFS) from various distribution of fitness effects and dominancemodels
compared with SFS from 1000G data. Note that the predicted SFS from theKyriazis et al. (2021) model and themodel proposed in this study fit the
1000G data well, whereas the predicted SFS from the Pérez-Pereira et al. (2022) and Kardos et al. (2021) models are greatly shifted toward rare
alleles due to the overabundance of strongly deleterious variation in thesemodels. See figure S3 for plots of simulated versus empirical synonymous
SFS and table S2 for proportion of singletons and common variants predicted by each model. SNP p single-nucleotide polymorphism.
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(U p 0:63; see sec. 5 of the supplemental PDF) to facilitate
more direct comparison of how these DFE and dominance
parameters affect the predicted inbreeding load. Note that
although Kardos et al. (2021) and Pérez-Pereira et al.
(2022) conducted a similar analysis of comparing the pre-
dicted inbreeding load from their models to an empirical
estimate, their analysis assumed small equilibrium effec-
tive population sizes that do not reflect those observed
in natural populations (see sec. 6 of the supplemental
PDF; figs. S5, S6). By contrast, our analysis employs a de-
mographic model that was estimated for humans by Kim
et al. (2017) that includes complex nonequilibrium dynam-
ics (see sec. 5 of the supplemental PDF), as informed by
observed patterns of synonymous variation in humans
(fig. S3).
Here, we find that allmodels greatly overshoot empirical

estimates of the inbreeding load in humans. Specifically,
the Kardos et al. (2021) and Pérez-Pereira et al. (2022)
models predict very high inbreeding loads of 2B p 38:0
and 2B p 20:4, respectively, while the Kyriazis et al. (2021)
model predicts an inbreeding load of 2B p 7:6 (figs. 4,
S4). Moreover, the Kardos et al. (2021) and Pérez-Pereira
et al. (2022) models also predict a high number of recessive
lethal mutations (30.4 and 7.8 mutations per human, re-
spectively), whereas the Kyriazis et al. (2021) model pre-
dicts no such lethal mutations (fig. 4). Thus, none of these
models are consistent with empirical inbreeding load esti-
mates in humans, although overpredictions are especially
notable for the Kardos et al. (2021) and Pérez-Pereira et al.
(2022)models. Importantly, the predictions from theKardos
et al. (2021) and Pérez-Pereira et al. (2022) models are also
not consistent with results from nonhuman species, where
inbreeding loads are typically on the order of ∼5 (Nietlis-
bach et al. 2019) and recessive lethal counts are consistently
on the order of ∼1.5 (Simmons and Crow 1977; McCune
et al. 2002). Finally, note that results are qualitatively sim-
ilar when assuming the same genomic deleterious muta-
tion rate for all models (U p 0:63; fig. S7), suggesting that
much of the overprediction of the inbreeding load for the
Kardos et al. (2021) and Pérez-Pereira et al. (2022) models
is due to the assumed DFE and dominance parameters.
Given the shortcomings of these existing models, we

propose a new model based on an analysis of the DFE in
humans under a nonadditive model of dominance (M. I. A.
Morton et al. 1956

Gao et al. 2015
Bittles & Neel 1994
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Cavassim, C. C. Kyriazis, and K. E. Lohmueller, unpub-
lished manuscript) as well as an estimate of the recessive
lethal portion of the DFE (Wade et al. 2023). In brief, this
new model assumes a somewhat less recessive dominance
distribution compared with that assumed by Kyriazis et al.
(2021) and is augmented with a small proportion (0.3%)
of recessive lethal mutations (fig. 2; for details, see sec. 5
of the supplemental PDF). Indeed, simulation results un-
der thismodel are inmuch better agreement with empirical
estimates. Specifically, this newmodel predicts an inbreed-
ing load of 2B p 6:3, including ∼0.9 recessive lethals per
diploid (fig. 4). Although the total predicted inbreeding
load slightly exceeds empirical estimates in humans, this
result is expected given that these empirical estimates are
based only on juvenile survival and may therefore be un-
derestimates of the full inbreeding load (Morton et al.
1956; Bittles and Neel 1994). Importantly, this model also
predicts patterns of genetic variation that closely align with
those observed in humans (fig. 3; table S2; for further dis-
cussion, see sec. 5 of the supplemental PDF).
Overall, this analysis demonstrates that sequence-based

DFE estimates can explain empirical estimates of fitness
whenmaking slight adjustments to account for their short-
comings in estimating the proportion of recessive lethal
mutations (Wade et al. 2023). Thus, sequence-based DFEs
remain preferable formodeling deleterious variation because
they account for the impacts of bothweakly and strongly del-
eterious variation. To facilitate use of this new model in
future simulation studies, we have provided an example
SLiM script available on GitHub (https://github.com/ckyriazis
/simulations_review).
Conclusions and Remaining Questions

In summary, computational simulation tools represent a
valuable resource for studying deleterious variation in nat-
ural populations that has been largely untapped by the
ecological and conservation genomics community. As ge-
nomic datasets for wild species continue to grow, the ne-
cessity of employing such simulation tools to help interpret
patterns in these data will also increase. Although param-
eterizing a computational simulation model may seem like
a daunting task for a first-time user, we hope that this per-
spective article will provide a useful starting point formany
of the key components.
Several outstanding questions remain to be addressed,

which have implications for our fundamental understand-
ing of deleterious variation and inbreeding depression as
well as for our ability to better parameterize simulation
models. These include the following.
How can we better estimate dominance parameters? Few

estimates of the distribution of dominance parameters are
available, and those that do exist sometimes conflict with
one another (Simmons and Crow 1977; Caballero and
Keightley 1994; Agrawal and Whitlock 2011; Huber et al.
2018). As dominance is an essential component of inbreed-
ing depression, obtaining a better understanding of domi-
nance will be essential to improving our ability to model
the effects of inbreeding depression in natural populations.
How much does the DFE differ across taxa? Most avail-

able estimates of the DFE are for mammals, with few ex-
isting estimates in other animal or plant taxa (fig. 1). Ob-
taining a better understanding of the DFE across diverse
taxa will help determine whether it is justified to use mam-
malian DFEs, such as the human DFE presented in this ar-
ticle (fig. 2), in simulations for other vertebrate taxa where
DFE estimates are not available.
How much does balancing selection contribute to in-

breeding depression? Although the focus of this review is
deleterious variation, studies in Drosophila suggest that
inbreeding depression cannot be fully explained by delete-
rious alleles under mutation selection balance and that
other factors, such as balancing selection, may play a role
(Charlesworth and Charlesworth 1999; Charlesworth 2015).
These studies notably contrast with our finding that delete-
rious variation models in humans are sufficient to explain
empirical estimates of the inbreeding load (fig. 4). Ad-
ditional research is needed to better understand the reasons
for these conflicting findings.
How can we better parameterize the effects of other

sources of deleterious variation, including noncoding varia-
tion and structural variation? Although our discussion in
this article is focused on deleterious mutations arising at
nonsynonymous sites in coding regions, there are several
other sources of deleterious variation, including variants
in noncoding regions and structural variants. Although
some evidence suggests that noncoding deleterious muta-
tions tend to be primarily weakly deleterious (Torgerson
et al. 2009; Murphy et al. 2022; Dukler et al. 2022), there
have been few attempts to quantify the selective effects of
structural variants (although see Abel et al. 2020). Quanti-
fying the selective effects of these types of mutations will
provide critical information for better parameterizingmod-
els of deleterious variation.
What is the role of epistasis? Epistasis, or interactions be-

tween variants at different loci, is a factor that is typically
ignored by models of deleterious variation and genetic
load (Agrawal andWhitlock 2012). In many cases, this as-
sumption seems justified, as there remains little convincing
evidence for epistasis playing a major role in shaping the
genomic landscape of deleterious variation (Carr and
Dudash 2003; Agrawal andWhitlock 2012; Garcia and Loh-
mueller 2021; Sandler et al. 2021). Nevertheless, more re-
search is needed to evaluate the potential impact of epista-
sis and understand its influence on deleterious variation
and load.

https://github.com/ckyriazis/simulations_review
https://github.com/ckyriazis/simulations_review
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